Publications

  • Arciniegas Ruiz, S., Eldar-Finkelman, H. (2022) Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front. Mol. Neurosci. 4:32.  https://doi.org/10.3389/fnmol.2021.792364

  • Rippin I, Bonder K, Joseph S, Sarsor A, Vaks L, Eldar-Finkelman H. (2021) Inhibition of GSK-3 ameliorates the pathogenesis of Huntington’s disease. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2021.105336

  • Rippin I, Eldar-Finkelman H. (2021) Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells. https://doi.org/10.3390/cells10020262

  • Rippin, I., Khazanov, N., Shirley Ben Joseph, Kudinov, T., Berent, E., Arciniegas Ruiz, S. M., Marciano, D., Levy, L., Gruzman, A., Senderowitz, H., & Eldar-Finkelman, H. (2020). Discovery and Design of Novel Small Molecule GSK-3 Inhibitors Targeting the Substrate Binding Site. International journal of molecular sciences.
    https://doi.org/10.3390/ijms21228709

  • Avrahami, L., Paz, R., Dominko, Silva Hecimovic, S., Bucci, C., Eldar-Finkelman, H. (2020) GSK-3-TSC axis governs lysosomal acidification through autophagy and endocytic pathways. Cell Signal.
    https://doi.org/10.1016/j.cellsig.2020.109597

  • Licht-Murava, A., Paz, R., Vaks, L., Avrahami, L., Plotkin, B., Eisenstein, M., & Eldar-Finkelman, H. A unique type of GSK-3 inhibitor brings new opportunities to the clinic. 2016. Science Signaling. https://doi.org/10.1126/scisignal.aah7102

  • Grieco, S. F., Velmeshev, D., Magistri, M., Eldar-Finkelman, H., Faghihi, M. A., Jope, R. S., & Beurel, E. Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase-3. 2016. The World Journal of Biological Psychiatry. https://doi.org/10.1080/15622975.2016.1224927

  • Grieco, S. F., Cheng, Y., Eldar-Finkelman, H., Jope, R. S., & Beurel, E. Up-regulation of insulin-like growth factor 2 by ketamine requires glycogen synthase kinase-3 inhibition. 2016. Progress in Neuro-Psychopharmacology and Biological Psychiatry. https://doi.org/10.1016/j.pnpbp.2016.08.008

  • Aloni E, Shapira M, Eldar-Finkelman H, Barnea A: GSK-3β Inhibition Affects Singing Behavior and Neurogenesis in Adult Songbirds. Brain Behav Evol. 2015. https://doi.org/10.1159/000382029

  • Azoulay-Alfaguter I, Elya R, Avrahami L, Katz A, Eldar-Finkelman H. Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. 2014. Oncogene. [PDF].

  • Avrahami L, Licht-Murava A, Eisenstein M, Eldar-Finkelman H. GSK-3 inhibition: Achieving moderate efficacy with high selectivity. 2013. Biochim Biophys Acta. https://doi.org/10.1016/j.bbapap.2013.01.016

  • Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. 2013. J Biol Chem.
    https://doi.org/10.1074/jbc.M112.409250

  • Lo Monte F, Kramer T, Gu J, Brodrecht M, Pilakowski J, Fuertes A, Dominguez JM, Plotkin B, Eldar-Finkelman H, Schmidt B. Structure-based optimization of oxadiazole-based GSK-3 inhibitors. 2013. Eur J Med Chem.
    https://doi.org/10.1016/j.ejmech.2012.06.006

  • Licht-Murava A, Eldar-Finkelman H. Exploiting substrate recognition for selective inhibition of protein kinases.2012. Curr Pharm Des. https://doi.org/10.2174/138161212800672741

  • Lo Monte F, Kramer T, Gu J, Anumala UR, Marinelli L, La Pietra V, Novellino E, Franco B, Demedts D, Van Leuven F, Fuertes A, Dominguez JM, Plotkin B, Eldar-Finkelman H, Schmidt B. Identification of Glycogen Synthase Kinase-3 Inhibitors with a Selective Sting for Glycogen Synthase Kinase-3α. 2012. J Med Chem.
    https://doi.org/10.1021/jm300309a

  • Eldar-Finkelman H, Martinez A. GSK-3 inhibitors: preclinical and clinical focus on CNS. 2011. Front Mol Neurosci.
    https://doi.org/10.3389/fnmol.2011.00032

  • Monte FL, Kramer T, Boländer A, Plotkin B, Eldar-Finkelman H, Fuertes A, Dominguez J, Schmidt B. Synthesis and biological evaluation of glycogen synthase kinase 3 (GSK-3) inhibitors: an fast and atom efficient access to 1-aryl-3-benzylureas. 2011. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2011.06.131

  • Alon LT, Pietrokovski S, Barkan S, Avrahami L, Kaidanovich-Beilin O, Woodgett JR, Barnea A, Eldar-Finkelman H. Selective loss of glycogen synthase kinase-3α in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation. 2011. FEBS Lett. https://doi.org/10.1016/j.febslet.2011.03.025

  • Licht-Murava A, Plotkin B, Eisenstein M, Eldar-Finkelman H. Elucidating Substrate and Inhibitor Binding Sites on the Surface of GSK-3β and the Refinement of a Competitive Inhibitor. 2011. J Mol Biol.
    https://doi.org/10.1016/j.jmb.2011.02.036

  • Azoulay-Alfaguter I, Yaffe Y, Licht-Murava A, Urbanska M, Jaworski J, Pietrokovski S, Hirschberg K, Eldar-Finkelman H. Distinct molecular regulation of GSK-3α isozyme controlled by its N-terminal region. Functional role in calcium/calpain signaling. 2011. J. Biol. Chem. https://doi.org/10.1074/jbc.M110.127969

  • Karyo R, Askira Y, Pinhasov A, Belmaker H, Agam G, Eldar-Finkelman H. Identification of eukaryotic elongation factor-2 as a novel cellular target of lithium and glycogen synthase kinase-3. 2010, Mol Cell Neurosci.
    https://doi.org/10.1016/j.mcn.2010.08.004

  • Eldar-Finkelman, H., Licht-Murava A, Pietrokovski S, Eisenstein M. Substrate Competitive GSK-3 Inhibitors- Strategy and Implications. 2009, Biochim. Biophys. Acta. https://doi.org/10.1016/j.bbapap.2009.09.010

  • Shruster A, Eldar-Finkelman H, Melamed E, Offen D. Wnt signaling pathway overcomes the disruption of neuronal differentiation of neural progenitor cells induced by oligomeric amyloid β-peptide. J Neurochem. 2011 Feb;116(4):522-9. doi: 10.1111/j.1471-4159.2010.07131.x. Epub 2011 Jan 24.
    https://doi.org/10.1111/j.1471-4159.2010.07131.x

  • Leng S, Zhang W, Zheng Y, Liberman Z, Rhodes CJ, Eldar-Finkelman H, Sun XJ. Glycogen synthase kinase 3 beta mediates high glucose-induced ubiquitination and proteasome degradation of insulin receptor substrate 1. J Endocrinol. 2010 Aug;206(2):171-81. Epub 2010 May 13. https://doi.org/10.1677/joe-09-0456

  • Watson RL, Spalding AC, Zielske SP, Morgan M, Kim AC, Bommer GT, Eldar-Finkelman H, Giordano T, Fearon ER, Hammer GD, Lawrence TS, Ben-Josef E. GSK3β and β-Catenin Modulate Radiation Cytotoxicity in Pancreatic Cancer. Neoplasia. 2010 May;12(5):357-65. https://doi.org/10.1593/neo.92112

  • Eldar-Finkelman, H., Eisenstein, M. Peptides Inhibitors Targeting Protein Kinases. 2009, Current Pharmaceutical Design. 15(21):2463-70. https://doi.org/10.2174/138161209788682253

  • Ilouz, R, Pietrokovsky, S, Eisenstein, M, Eldar-Finkelman, H. 2008, New Insights into the Autoinhibition Mechanism of Glycogen Synthase Kinase-3β. J. Mol. Biol. 385:999-1007. https://doi.org/10.1016/j.jmb.2008.08.079

  • Liberman Z. Plotkin, B. Eldar-Finkelman, H., 2008, Coordinated phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 and protein kinase CβII in the diabetic fat tissue. 2008, Am. J. Physiol. Endocrinol. Metab. 294:E1169-1177. https://doi.org/10.1152/ajpendo.00050.2008

  • Caspi, M., Zilberberg , A. Eldar-Finkelman, H., Rosin-Arbesfeld, R. Nuclear GSK-3β inhibits the canonical Wnt signalling pathway in a β-catenin phosphorylation-independent manner. 2008, Oncogene. 27:3546-3555. https://doi.org/10.1038/sj.onc.1211026

  • Sharfi, H. Eldar-Finkelmnan, H. 2007, Sequential Phosphorylation of Insulin Receptor Substrate-2 by Glycogen Synthase Kinase-3 and c-Jun N-Terminal Kinase Plays a Role in Hepatic Insulin Signaling. Am. J. Physiol. Endocrinol. Metab. 2008, 294: E307-15. https://doi.org/10.1152/ajpendo.00534.2007

  • Erez A, Castiel A, Trakhtenbrot L, Perelman M, Rosenthal E,Goldstein I, Stettner N, Harmelin A, Eldar-Finkelman H, Campaner S, Kirsch I, Izraeli S. 2007, The SIL Gene Is Essential for Mitotic Entry and Survival of Cancer Cells. Cancer Res. 67:4022-4027. https://doi.org/10.1158/0008-5472.CAN-07-0064

  • Shapira, M. Licht, A. Milman, A. Pick,C.G., Shohami, E. Eldar-Finkelman, H. 2007. Role of Glycogen Synthase Kinase-3β in Early Depressive Behavior Induced by Mild Traumatic Brain Injury. Mol. Cell. Neuroscience. 34:571-577. [PDF]

  • Ilouz, R., Kowalsman, N., Eisenstein, M., Eldar-Finkelman, H. 2006 Identification of Novel Glycogen Synthase Kinase-3β Substrate Interacting Residues Suggests A Common Mechanism For Substrates Recognition. J. Biol. Chem. 281:30621-30. https://doi.org/10.1074/jbc.m604633200

  • Kaidanovich-Beilin, O., Eldar-Finkelman, H. 2006, Peptides Targeting Protein Kinases-Strategies and Implicatiosn. Physiology, 21:411-8. https://doi.org/10.1152/physiol.00022.2006

  • Kaidanovich-Beilin, O. and Eldar-Finkelman, H. 2006 Long-Term Treatment with Novel Glycogen Synthase Kinase-3 Inhibitor Improves Glucose Homeostasis in Ob/Ob Mice: Molecular Characterization In Liver And Muscle. J. Pharmacol. Exp. Ther. 316:17-24. https://doi.org/10.1124/jpet.105.090266

  • Liberman Z. and Eldar-Finkelman H. 2005, Serine332 Phosphorylation of Insulin Receptor Substrate-1 by Glycogen Synthase Kinase-3 Attenuates Insulin Signaling. J. Biol. Chem. 280:4422-8. https://doi.org/10.1074/jbc.m410610200

  • Tailor, I. Tennenbaum , T., Kuroki, T. Eldar-Finkelman, H. 2005, PKC-δ-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am. J. Physiol. Endocrinol. Metab. 288:E405-11. https://doi.org/10.1152/ajpendo.00378.2004

  • Kirshennboim, N., Plotkin, B., Ben Shlomo, S., Kaidanovich-Beilin, O., Eldar-Finkelman, H. 2004, Lithium-mediated phosphorylation of glycogen synthase kinase-3 involves PI3 Kinase-dependent activation of protein kinase C-α. J. Mol. Neuroscience, 24, 199-207. https://doi.org/10.1385/jmn:24:2:237

  • Kaidanovich-Beilin, O., Milman, A., Pick, C., Weizman, A., Eldar-Finkelman, H. 2004, Rapid anti-depressive like activity of specific GSK-3 inhibitor, and its effect on β-catenin in the mouse hippocampus. Biol. Psychiatry, 55:781-784.
    https://doi.org/10.1016/j.biopsych.2004.01.008

  • Eldar-Finkelman, H. Ilouz, R. 2003, Challenges and opportunities with glycogen synthase kinase-3 inhibitors in treatment of insulin resistance and type 2 diabetes, Expert Opin. Invs. Drug, 2003, 12 1511-1519.
    https://doi.org/10.1517/13543784.12.9.1511

  • Talior, I., Yarkoni, M., Bashan, N., Eldar-Finkelman, H. 2003, Increased Glucose Uptake Promotes Oxidative Stress and Activation of Protein Kinase C-δ in Adipocytes of Obese and Insulin-Resistant C57Bl/6J Mice. Am. J. Physiol. Endocrin. Metab. 285:E295-E302. https://doi.org/10.1152/ajpendo.00044.2003

  • Plotkin B., Kaidanovich, O., Talior, I. Eldar-Finkelman, H. 2003 Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. J. Pharmacol. Exp. Ther. Section - molecular and cellular. 305:974-980
    https://doi.org/10.1124/jpet.102.047381

  • Kaidanovich-Beilin, O., Eldar-Finkelman, H. 2002, The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Expert. Opin. Ther. Targ.; 6:555-561. https://doi.org/10.1517/14728222.6.5.555

  • Ilouz, R., Kaidanovich, O., Gurwitz, D., Eldar-Finkelman, H. 2002 Inhibition of glycogen synthase kinase-3β by bivalent zinc ions: insights into the insulin-mimetic action of zinc. Biochem. Biophys. Res. Commun. 295:102-106.
    https://doi.org/10.1016/s0006-291x(02)00636-8

  • Eldar-Finkelman, H. 2002, Glycogen synthase kinase-3: an emerging therapeutic target. Trends Mol. Med; 8:126-132.
    https://doi.org/10.1016/s1471-4914(01)02266-3

  • Hall, J.L., Chatham, J.C., Eldar-Finkelman H., Gibbons, H. 2001 Upregulation of glucose metabolism during intimal lesion formation is coupled to the inhibition of vascular smooth muscle cell apoptosis: role of GSK-3β. Diabetes; 50:1171-9 https://doi.org/10.2337/diabetes.50.5.1171

  • Zhao, A.Z., Shinohara, M.M., Huang, D., Shimizu, M., Eldar-Finkelman, H. Krebs, E.G., Beavo, J.V., Bornfeldt, K.E. 2000, Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes. J. Biol. Chem.; 275:11348-54. https://doi.org/10.1074/jbc.275.15.11348